
ON THE EQUIDISTRIBUTION OF SOME HODGE
LOCI

SALIM TAYOU

Abstract. We prove the equidistribution of the Hodge locus for
certain non-isotrivial, polarized variations of Hodge structure of
weight 2 with h2,0 = 1 over complex, quasi-projective curves.
Given some norm condition, we also give an asymptotic on the
growth of the Hodge locus. In particular, this implies the equidis-
tribution of elliptic fibrations in quasi-polarized, non-isotrivial fam-
ilies of K3 surfaces.
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1. Introduction

Let S be a complex, quasi-projective curve and let {VZ,F•V , Q} be
an integral, polarized variation of Hodge structure of weight 2 over S
with h2,0 = 1. We assume that the bilinear form associated Q is even
of signature (2, b). For s ∈ S, let ρ(VZ,s) be the Picard number of
VZ,s, that is, the rank of the group of integral (1, 1)-classes in VZ,s. Let
M be the minimum value of the integers ρ(VZ,s) for s ∈ S. It is a
classical result of Green [Voi02, Prop. 17.20] and Oguiso [Ogu03] that
the Noether-Lefschetz locus

NL(VZ) = {s ∈ S, ρ(VZ,s) > M}
is a countable dense subset of S, when the variation of Hodge structure
is non-trivial. A weaker result obtained in [BKPSB98] assumes the base
S to be projective. One might then ask how the set of points where
the Picard rank jumps distributes inside S. The goal of this paper is
to investigate quantitative statements on the distribution of the Hodge
locus.

Say that the polarized variation of Hodge structure {VZ,F•V , Q} is
simple if there is no polarized sub-variation of Hodge structure {V′Z,
F•V ′, Q} such that VZ/V′Z is non-zero and torsion free. In fact, start-
ing from an arbitrary polarized variation of Hodge structure {VZ,F•V ,
Q} with h2,0 = 1, the minimal sub-variation {V′Z,F•V ′, Q} for which
VZ/V′Z is torsion free is simple. Its orthogonal with respect to Q is also
an integral sub-variation of Hodge structure by Deligne and Schmid’s
semi-simplicity theorem [Del72, Sch73] and which is purely of type
(1, 1), thus it is trivial, up to taking a finite étale cover of S.

Say also that {VZ,F•V , Q} is non-trivial if the line bundle F2V is
not isotrivial. By a result of Griffiths [Gri74, Chapter II] the first Chern
class ω of F2V is positive definite, and the integration with respect to
ω defines a finite measure µ on S.

Assume that for each s ∈ S, the lattice (VZ,s, Q) is isomorphic to
an even quadratic lattice (V, ( . )) of signature (2, b) with b ≥ 3 and
Q(x) = (x.x)

2
for all x ∈ V .

Let V∨Z ⊂ VQ be the dual local system to VZ with respect to Q, i.e
the fiber V∨Z,s at each point s ∈ S is equal to

{x ∈ VQ,s, ∀y ∈ VZ,s, (x.y) ∈ Z}.
The fibers of the local system V∨Z/VZ are isomorphic to the finite group
V ∨/V . For s ∈ S and λ ∈ V∨Z,s, there exists γ ∈ V ∨/V such that λ ∈
γ+V with the previous identification, and therefore Q(λ) ∈ Q(γ) +Z.
In general we have Q(λ) ∈ ∪γ∈V ∨/V (Q(γ) + Z).
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If H is a subgroup of V ∨/V we let H⊥ be the orthogonal of H in
V ∨/V with respect to the reduction of the form ( . ) valued in Q/Z.
The main result of this paper is the following theorem.

Theorem 1.1. Let {VZ,F•V , Q} be a non-trivial, polarized, simple
variation of Hodge structure of weight 2 over a quasi-projective curve
S with h2,0 = 1. Assume that the quadratic lattice (V, ( , )) is even
and that the local system V∨Z/VZ is trivial. Let H be a maximal totally
isotropic subgroup of V ∨/V . Let µ be the measure defined by integrating
the first Chern class of F2V and let γ ∈ H⊥ ⊂ V ∨/V . Set Aγ =
{−Q(x+ γ), x ∈ V }. Then

(i) For n ∈ Q>0, the number N(γ, n) of points s ∈ S (counted with
multiplicity) for which there exists a (1, 1)-element x in V∨Z,s of
class γ in V∨Z,s/VZ,s and (x.x) = −2n is equal to zero if n /∈ Aγ,
otherwise it satisfies

N(γ, n) ∼ µ(S)
(2π)1+ b

2 .n
b
2√

|V ∨/V |Γ(1 + b
2
)
.
∏
p

µp(γ, n, V )

as n tends to infinity along Aγ, where∏
p<∞

µp(γ, n, V ) � 1.

If S is projective, then the error term is Oε(n
2+b

4
+ε) for every

ε > 0.
(ii) The set of such points equidistributes in S with respect to µ.

We refer to Example 2.3 for the definition of the factors µp(γ, n, V ).
The product

∏
p<∞ µp(γ, n, V ) is called the singular series. The Hodge

locus has a schematic structure (see [Voi02, Chapter 17]). The mul-
tiplicity of a point evoked in Theorem 1.1 is the multiplicity in this
schematic sense.

This number can also be seen as the multiplicity of intersection of
S with special divisors, the so-called Heegner divisors, in the moduli
space of Hodge structure of K3 type over V . This moduli space is in fact
a Shimura variety of orthogonal type. As a part of their study of the
André–Oort conjecture [Yaf07], Clozel and Ullmo proved in [CU05] that
the Heegner divisors are equidistributed with respect to the measure
induced by the Bergman metric ([Hel64, Chap VIII]). The latter is
simply given, up to an absolute constant, by integrating the top power
of the first Chern class of the Hodge bundle. What we prove here is
the equidistribution of the intersection of the Heegner divisors with any
fixed quasi-projective curve as above with respect to the measure given
by integration the first Chern class of the Hodge bundle.
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Corollary 1.2. Let {VZ,F•V , Q} be a non-trivial, polarized, simple
variation of Hodge structure of weight 2 over a quasi-projective curve
S and µ the measure on S defined by integrating the first Chern class of
F2V. Then the set of points s ∈ S for which there exists a (1, 1)-class
x in VZ,s such that (x.x) = −2n are equidistributed with respect to µ
along positive integers n in the infinite set {−Q(x), x ∈ V }.

Indeed, we can always take a finite étale cover S̃ of S for which the
pullback of the local system V∨Z/VZ is trivial and apply Theorem 1.1
to S̃ which imply the corollary.

In particular, we deduce various equidistribution results for points
in some 1-parameter families of complex varieties.

Corollary 1.3. Let ΛK3 be the K3 lattice and P ⊂ ΛK3 a primitive
Lorentzian anisotropic sublattice of rank ρ ≤ 4. Let X π−→ S be a
non-isotrivial family of K3 surfaces with generic Picard group equal
to P over a quasi-projective curve S and let {R2π∗ZX ,F•H, Q} be the
induced variation of Hodge structure on S. Let µ be the measure induced
by integrating the first Chern class of F2H. Fix H ⊂ P∨/P a maximal
isotropic group, γ ∈ H⊥ and let Aγ = {Q(x+ γ), x ∈ P}.

(i) For n ∈ Q>0, the number N(γ, n) of points s ∈ S (counted with
multiplicity) for which Xs admits a parabolic line bundle of type
(γ, n) is zero if n /∈ Aγ, otherwise it satisfies

N(γ, n) ∼ µ(S)
(2π)

22−ρ
2 .n10− ρ

2√
|P∨/P |Γ(22−ρ

2
)
.
∏
p<∞

µp(n, γ, V )

as n tends to infinity in Aγ, and where V = P⊥.
If S is projective, then the error term is Oε(n

2+b
4

+ε) for every
ε > 0.

(ii) The previous set is equidistributed in S with respect to µ.
(iii) If P∨/P has no non-trivial isotropic subgroup, then the set of

points s ∈ S (counted with multiplicity) for which Xs admits
an elliptic fibration of norm less than n is equidistributed with
respect to µ as n tends to infinity.

For the definition of a parabolic line bundle of type (γ, n) and the
norm of an elliptic fibration, we refer to Definition4.4. If the Lorentzian
sublattice P is generated by a single element, the corollary says that
the number of elliptic surfaces of norm less than n2 (or volume less
than n) in a generic family of quasi-polarized K3 surfaces "grows like"
n20. In the case of twistor families of K3 surfaces, an analogous result
was shown by Simion Filip in [Fil16] and an improvement of the error
term was given by Bergeron and Matheus in [BM17]. The main term
there grows also like n20, and Filip works with the full K3 lattice ΛK3.
His method is different from ours, although it was the starting point of
this paper. Notice also the analogy between the coefficient of the main
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term in our case and in Filip’s case. Indeed, due to the Siegel mass
formula (see [ERS91]), the product

∏
p<∞ µp(n, γ, P ) can be expressed

as a sum of volumes of some homogeneous spaces (compare to Filip’s
formula 3.1.6 in [Fil16]). There is also a generalization of the previous
corollary which concerns families of hyperkähler manifolds over a quasi-
projective curve which we discuss of the section 4.3.

There are several arithmetic statements which shed light on the arith-
metic analogues of the above results, the curve S being replaced by an
open subset of the spectrum of the ring of integers of a number field.
A result by Charles [Cha18] shows that the set of primes where the
reduction of two elliptic curves defined over a number field are geomet-
rically isogenous is infinite. More recently, Shankar and Tang [ST17]
proved by using similar techniques that, given a simple abelian surface
defined over a number field and which has real multiplication, there are
infinitely many places where its reduction is not absolutely simple.

1.1. Outline of the proof. Let us now sketch the proof of Theorem
1.1. Let DV be the period domain associated to the quadratic lattice
(V,Q), namely the complex analytic variety defined by

DV = {x ∈ P(VC), (x.x) = 0, (x.x) > 0}.
Let ΓV be the stable orthogonal group of V defined by

ΓV := Ker (O(V )→ O(V ∨/V )) ,

where
V ∨ := {x ∈ VQ, ∀y ∈ V, (x.y) ∈ Z}

denotes as before the dual lattice of V . By Baily and Borel [BB66],
the complex analytic quotient ΓV \DV can be endowed with a natural
structure of quasi-projective variety called an orthogonal modular va-
riety. It is the structure that we consider in the whole text. Let L
denote the Hodge bundle on ΓV \DV and let ω be its first Chern class.
Recall that L is an ample line bundle [BB66].

For γ ∈ V ∨/V and n ∈ −Q(γ) + Z with n > 0, let Z(γ,−n) denote
the associated Heegner divisor in ΓV \DV which parametrizes Hodge
structures on V for which there exists a rational Hodge class λ ∈ γ+V
with (λ.λ) = −2n (see Section 2.2.2 for the precise definition). Let
{S,VZ,F•V , Q)} be given as in Theorem 1.1. Since the local system
V∨Z/VZ is trivial, we have a corresponding holomorphic period map

ρ : S → ΓV \DV .

This map is in fact algebraic by Borel [Bor72]1. The pullback of the
Hodge bundle L along ρ is equal to F2V . The idea of the proof is to

1In fact, in [Bor72] the theorem is stated for smooth quotients but see [Huy16,
Remark 4.2] for how one can reduce to this case.
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obtain a global estimate of the cardinality (with multiplicity) of the set

{s ∈ S, ∃λ ∈ γ + VZ,s, (λ.λ) = −2n}.
To this end, following ideas of Maulik [Mau14], we use linear depen-
dence relations between Heegner divisors to get an upper bound. These
relations follow from Borcherds’ construction in [Bor99] of a modular
form on the Picard group of the orthogonal modular variety ΓV \DV .
Then we extend those relations to a suitable toroidal compactification
of ΓV \DV . It is at this level that we need a restriction on γ being in
H⊥ for a maximal isotropic subgroup H of V ∨/V , since for arbitrary γ,
we don’t know how to control the intersection of S with the boundary
divisor of the given toroidal compactification.

To obtain a lower bound, we construct a suitable fibration over ev-
ery small enough simply connected open subset ∆ ⊂ S. Then following
ideas of Green (see [Voi02, Chap.17]), we obtain a map to the homo-
geneous space A0 = {x ∈ VR, Q(x) = −1}. This map turns out to be,
outside a Lebesgue negligible analytic subset, a local diffeomorphism.
We use then a result of equidistribution of integral points on A0 proven
by Eskin–Oh in a more general context in [EO06, Th.1.2]. The proof of
the latter relies on results from ergodic theory, namely the ergodicity
of unipotent flows, which is also an important ingredient in the proof
of the main result of [CU05].

1.2. Outline of the paper. In section 2 we recall the construction of
the Borcherds’ modular form and its implications on the linear depen-
dence relations between Heegner divisors following ideas of Maulik in
[Mau14]. We then explain how to extend those relations to the toroidal
compactification of ΓV \DV determined by the perfect cone decompo-
sition following the work of Peterson in [Pet15]. This will allow us,
under some mild assumptions, to give global estimates on the growth
of the Hodge locus in a curve. We conjecture that these estimates
still hold without those assumptions. In section 3 we construct a fi-
bration in spheres over the small open subsets of S which, combined
with equidistribution results of Eskin and Oh [EO06], allow to deduce
a lower estimate on the cardinality of Hodge locus. In section 4 we
explain how one can reduce to the case where the group V ∨/V has no
non-trivial isotropic subgroup and then prove the result in this case.
The end of the section is devoted to prove corollary 1.3.

1.3. Acknowledgements. I am very grateful to François Charles for
introducing me to this subject, for the many discussions we had and
for his enlightening guidance. I wish also to thank Quentin Guignard
and Lucia Mocz for their careful reading of an earlier version of this
paper. I have benefited from many useful conversations with Yohan
Brunebarbe, Gaëtan Chenevier and Étienne Fouvry. Special thanks
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go to the referee who helped improving the exposition and reducing
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This project has received funding from the European Research Coun-
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1.4. Notations. If ε > 0 f, gε, h : N → R are real functions and gε
does not vanish, then:

(1) f = Oε(g) if there exists an integer nε ∈ N, a positive constant
Cε > 0 such that

∀n ≥ nε, |f(n)| ≤ Cε|gε(n)|.
(2) f � h if and f = O(h) and h = O(f).

2. The Weil representation and modular forms

2.1. General setting. We recall in this section some results about
Weil representations and certain vector-valued modular forms associ-
ated to quadratic lattices. Our main references are [Bor98] and [Bor99].

Let Mp2(R) be the metaplectic cover of SL2(R): the elements of this
group consist of pairs (M,φ), where

M =

(
a b
c d

)
∈ SL2(R)

and φ is a holomorphic function on the Poincaré upper half-plane H
such that φ(τ)2 = cτ + d, τ ∈ H. The group structure is defined by

(M1, φ1).(M2, φ2) = (M1M2, τ 7→ φ1(M2.τ)φ2(τ)),

for (M1, φ1), (M2, φ2) ∈ Mp2(R), whereM2.τ stands for the usual action
of SL2(R) on H given by fractional linear transformations.

The map Mp2(R)→ SL2(R) given by (M,φ) 7→M is a double cover
of SL2(R). Denote by Mp2(Z) the inverse image of SL2(Z) under this
map. It is well known (see [Ser77, P.78]) that Mp2(Z) is generated by
the elements:

T =

((
1 1
0 1

)
, 1

)
and S =

((
0 −1
1 0

)
, τ 7→

√
τ

)
.

Let ρ : Mp2(Z) → GL(V ) be a finite-dimensional complex representa-
tion of Mp2(Z) that factors through a finite quotient of Mp2(Z) and let
k ∈ 1

2
Z. The group Mp2(Z) has a right action on the space of functions

f : H→ V given by
(f.(M,φ)k) (τ) = φ(τ)−2kρ(M,φ)−1f(M.τ).(1)

Fix an eigenbasis (vγ)γ∈I of V with respect to the action of T . A
holomorphic function f : H → V which is invariant under the action
of T has a Fourier expansion
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f(τ) =
∑
γ∈I

∑
n∈Q

c(γ, n)e2iπnτvγ.(2)

For (γ, n) ∈ I ×Q, the coefficient c(γ, n) is non-zero only if e2iπn is the
eigenvalue of T acting on vγ. The function f is said to be holomorphic
at infinity if c(γ, n) = 0 for all n < 0 and γ ∈ I.
Definition 2.1. A holomorphic function f : H → V is a modular
form of weight k and type ρ, if it satisfies the following conditions:

(i) f is invariant under the action (1) of Mp2(Z).
(ii) f is holomorphic at infinity.

Moreover, if c(γ, 0) = 0 for all γ ∈ I in the formula (2), we say that f
is a cusp form.

Let Mk(ρ) denote the C-vector space of modular forms of weight k
and type ρ, and let Sk(ρ) be the subspace of cusp forms. Both Mk(ρ)
and Sk(ρ) are finite-dimensional vector spaces over C (see [Bor99, Sec-
tion 2]).

Let (V,Q) be an even lattice of signature (b+, b−) with the underlying
non-degenerate symmetric bilinear form denoted by ( . ) and such that
Q(x) = (x.x)

2
for x ∈ V . Let V ∨ be the dual lattice of V . We can

associate to the quadratic lattice (V,Q) a representation ρV of the
metaplectic group Mp2(Z) whose underlying vector space is C[V ∨/V ].
For this, it is enough to specify the action of S and T on a basis
(vγ)γ∈V ∨/V of C[V ∨/V ] as follows :

ρV (T )vγ = e2iπQ(γ)vγ,

ρV (S)vγ =
i
b−−b+

2√
|V ∨/V |

∑
δ∈V ∨/V

e−2iπ(γ,δ)vδ,
(3)

where γ ∈ V ∨/V . We denote by ρ∗V the dual representation of ρV .

Remark 2.2. By a result of McGraw [McG03, Prop. 5.6], the complex
vector space Mk(ρ

∗
V ) has a rational structure Mk(ρ

∗
V )Q given by modular

forms with rational coefficients, and similarly for Sk(ρ∗V ).

We present an example of a modular form which will be crucial for
our later study.

Example 2.3. Assume V has signature (2, b) where b ≥ 3. There is
an Eisenstein series EV in Mk(ρ

∗
V ) whose Fourier expansion is given by

(see [BK01, Prop.4]):

EV (τ) =
∑

γ∈V ∨/V

∑
n∈−Q(γ)+Z,n≥0

c(γ, n)qnvγ,
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where q = e2iπτ , τ ∈ H, and the coefficients c(γ, n) are given by:{
c(0, 0) = 2

c(γ, n) = − 22+ b
2 .π1+ b

2 .n
b
2√

|V ∨/V |Γ(1+ b
2

)
.
∏

p µp(γ, n, V ) for alln > 0,

where the product is ranging over all primes p. The factors µp(γ, n, V )
are defined as follows. For γ ∈ V ∨/V , n ∈ −Q(γ) + Z such that n is
positive and a a positive integer, let

N(γ, n, L, a) = |{α ∈ L/aL, Q(α + γ) + n ≡ 0 (mod a)}|.
For a prime p, Siegel proves in [Sie35, Hilfssatz 13] that for s suffi-

ciently large, the value of p−(1+b)sN(γ, n, L, ps) is independent of s and
we define

µp(γ, n, V ) := lim
s→∞

p−(1+b)sN(γ, n, V, ps).

The infinite product
∏

p µp(γ, n, V ) converges as long as every factor is
different from zero. Since Q is indefinite of rank greater than 5, this is
equivalent by Hasse-Minkowski theorem ([Ser77, p.41]) to the equation
Q(α) + n = 0 having a solution α in γ + V . In this situation, we say
that n satisfy local congruence conditions and by [BD08, Proposition
2] (see also [Iwa97, Section 11.5]), we have∏

p

µp(γ, n, V ) � 1.

Hence the estimate
c(γ, n) � n

b
2 .

The coefficients c(γ, n) are rational numbers by [BK01, Proposition 14]
so that EV ∈ Mk(ρ

∗
V )Q.

2.2. Borcherds’ modular form. In this section we introduce the
Heegner divisors and state a modularity result of their generating se-
ries. This will allow us later to control the growth of their intersection
with a curve S supporting a variation of Hodge structure. As before,
let (V,Q) be an even quadratic lattice and assume henceforth that it
has signature (2, b) with b ≥ 3. Let O(V ) be the orthogonal group of
V and ΓV the subgroup of elements acting trivially on V ∨/V . We refer
to [Mau14] and [Huy16, Chapter 6] for more details on this section.

2.2.1. The period domain. Let DV be the period domain associated to
V , that is the complex analytic variety

DV := {w ∈ P(VC), (w,w) = 0, (w,w) > 0}.
Let D+

V be one of the two connected components of DV . Let G be
the connected component of the identity of the real Lie group O(VR),
where VR := V ⊗Z R is endowed with the real extension of Q. The
action of discrete subgroup Γ+

V := ΓV ∩G on D+
V is proper and totally

discontinuous and the quotient Γ+
V \D

+
V has the structure of a quasi-

projective variety with orbifold singularities by [BB66].
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There is another realization of DV as a Grassmanian. Let Gr(2, VR)
be the Grassmanian of planes of VR and let Gr+(2, VR) be the open
subset of positive definite planes. We have a natural split covering of
degree 2

DV −→ Gr+(2, VR)

ω = X + iY 7→ P =< X, Y >,

where P is the oriented plane generated by X and Y . The restriction
of the map above to D+

V is a diffeomorphism. Both of the previous
descriptions of D+

V will be interchangeably used henceforth.

2.2.2. Heegner divisors. In this section, the main result from [Bor99]
is used to produce linear dependence relations between certain special
divisors that will be defined hereafter.

For any vector v ∈ VR such that Q(v) < 0, let v⊥ be the set of planes
in D+

V orthogonal to v. Let γ ∈ V ∨/V and n ∈ Q(γ) + Z with n < 0.
The union of hyperplanes ⋃

v∈γ+V,Q(v)=n

v⊥

is locally finite, invariant under the action of Γ+
V , and defines an alge-

braic divisor on Γ+
V \D

+
V given as

Z(γ, n) := Γ+
V \

 ⋃
v∈γ+V,Q(v)=n

v⊥

 .

In terms of Hodge structures, Z(γ, n) parametrizes Hodge structures
on V for which there exists a rational Hodge class λ in γ + V with
Q(λ) = n.

The restriction of the tautological line bundle O(−1) to D+
V ⊂ P(VC)

admits a natural Γ+
V -equivariant action and defines an algebraic line

bundle L := Γ+
V \O(−1) on Γ+

V \D
+
V called the Hodge bundle. We define

Z(0, 0) to be a divisor whose class is equal to the dual of the Hodge
bundle.

Finally, we set Z(γ, n) = 0 if n > 0 or if n = 0 and γ 6= 0. The
Z(γ, n) are the Heegner divisors. They are Cartier divisors on Γ+

V \D
+
V ,

and we denote by [Z(γ, n)] their associated class in Pic(Γ+
V \D

+
V ).

Consider the formal power series

ΦV (q) =
∑

γ∈V ∨/V
n∈−Q(γ)+Z

[Z(γ,−n)]qnvγ ∈ Pic(Γ+
V \D

+
V )[[q

1
2d ]]⊗ C[V ∨/V ].

Here d is the order of V ∨/V .
The following result is due to the work of Borcherds ([Bor99]), com-

bined with the refinement of McGraw (see remark 2.2):



11

Theorem 2.4. ΦV (q) ∈ Pic(Γ+
V \D

+
V )⊗M1+ b

2
(ρ∗V )Q.

We will follow ideas of Maulik in [Mau14, Section 3] with some
changes in order to translate the previous theorem in terms of lin-
ear dependence relations between the Heegner divisors. This will be
achieved by writing ΦV as a sum of a multiple of an Eisenstein se-
ries and a cusp from, then using standard bounds on the growth of
coefficients of cusp forms.

By [Bru02, p.27], for each γ in a set of representatives of the quotient
of V ∨/V by the involution x 7→ −x, there exists an Eisenstein series
Eγ such that the following decomposition holds

M1+ b
2
(ρ∗V )Q =

⊕
γ

C.Eγ ⊕ S1+ b
2
(ρ∗V )Q

where E0 = EV is the Eisenstein series from Example 2.3. Since the
only (γ, 0)-coefficient of ΦV which is non-zero is the one corresponding
to γ = 0, there exists a finite set I, a family (Z(γi, ni))∈I of Heegner
divisors and a family (gi)i∈I of cusp forms such that

ΦV =
1

2
[Z(0, 0)]⊗ EV +

∑
i∈I

[Z(γi, ni)]⊗ gi

For γ ∈ V ∨/V , n ∈ −Q(γ) + Z, by identifying the (γ, n)-coefficient in
the above expression we get

[Z(γ,−n)] =
1

2
c(γ, n)[Z(0, 0)] +

∑
i∈I

gi(γ, n)[Z(γi, ni)].(4)

Notice that all the coefficients in (4) are rational numbers. For a cusp
form f , the trivial bounds on the order of growth of its coefficients (see
[Sar90, Prop. 1.5.5]) say that

|aγ,n(f)| ≤ Cε,fn
2+b

4
+ε,

for all ε > 0, some constant Cε,f > 0, and for all γ ∈ V ∨/V and
n ∈ −Q(γ) + Z with n ≥ 0.

Hence, we can find a constant Cε > 0 such that for all i ∈ I, n and
γ as before, we have

|gi(γ, n)| ≤ Cεn
2+b

4
+ε.

Taking into account relation (4) and the expression in Example 2.3,
we get:

Proposition 2.5. For every ε > 0, γ ∈ V ∨/V and n ∈ −Q(γ) + Z
with n > 0, the following estimate holds in Pic(ΓV \DV )Q

[Z(γ,−n)] = − (2π)1+ b
2n

b
2√

|V ∨/V |Γ(1 + b
2
)

∏
p

µp(γ, n, V )[Z(0, 0)]+Oε(n
2+b

4
+ε).
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The above proposition is a quantitative version of Lemma 3.7 in
[Mau14].

2.3. Extension to a toroidal compactification. The goal in this
section is to extend the estimate in Proposition 2.5 to a well chosen
toroidal compactification of ΓV \DV . This will allow us to control their
growth in cohomology and the growth of their intersection with any
curve as in Theorem 1.1. We first start by recalling the construction of
the Baily-Borel compactification of ΓV \DV . For a short summary in
the case of orthogonal modular varieties, see [GHS13] which we follow
closely, or [BJ06, Part III] for the general case.

2.3.1. Baily-Borel compactification. There is a "minimal" compactifi-
cation of ΓV \DV constructed by Baily and Borel in [BB66] and which
proceeds by adding rational boundary components and then showing
that the resulting space is a projective algebraic variety.

The rational boundary components correspond precisely to maximal
rational parabolic subgroups of G, which in turn are the stabilizers of
totally isotropic subspaces of VQ. Since Q has signature (2, b), such
spaces have dimension 1 or 2. Hence, we obtain the following descrip-
tion:

(Γ+
V \D

+
V )BB = Γ+

V \D
+
V t

⊔
Π

XΠ t
⊔
`

Q`.

where ` and Π run through representatives of the finitely many Γ+
V -

orbits of isotropic lines and isotropic planes in VQ. Each XΠ is a mod-
ular curve, and Q` is a point. They are also known as 1-cusps and
0-cusps respectively.

2.3.2. Extension of the relations between Heegner divisors. The bound-
ary of the Baily-Borel can be singular and the Zariski closure of the
Heegner divisors may not be Cartier. To solve this problem, we extend
the relation (4) to a well-chosen toroidal compactification of ΓV \DV .
We work with the toroidal compactification considered in [Pet15, Sec-
tion 5.2] and which is given by the perfect cone decomposition. We
denote it by ΓV \DV

tor
. Above each cusp determined by an isotropic

subspace I of V , the boundary divisors are determined by the one di-
mensional rays in the Stab(I)-invariant decomposition of the positive
cone of I⊥/I and in this situation they lie in its boundary. Hence
above every 1-cusp F there is only one irreducible Cartier boundary
divisor ∆F and there are no other boundary divisors. Also the closure
Z(γ, n) of a Heegner divisor Z(γ, n) is Cartier for all γ ∈ V ∨/V and
n ∈ Q(γ) + Z. For more details, see [Pet15, 5.2.4]. The rest of the
section is devoted to bound the coefficients of the boundary divisors in
some particular cases. We start first by recalling Peterson’s results in
our context, especially Theorem 5.3.3 in [Pet15].
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Let I be an isotropic primitive plane of V , F the associated 1-cusp.
The isomorphism class of the definite lattice I⊥/I depends only on
the cusp F . We denote it by KF and let ΘF be the associated theta
function, i.e the function defined by

ΘF (τ) =
∑

γ∈K∨F /KF

∑
x∈γ+KF

q−Q(x)vγ, q = e2iπτ , τ ∈ H,

where (vγ)γ∈K∨F /KF is the standard basis of C[K∨F/KF ].
Let I# = IQ ∩ V ∨. Following [Bri83, 4.1], I is said to be strongly

primitive if I# = I. The cardinality NF of the finite group HI = I#/I
depends only on F and is called the imprimitivity of F . Let H⊥I :=
{x ∈ L∨/L, ∀y ∈ HI , (x, y) = 0}.

Proposition 2.6. Let I ⊂ V a primitive isotropic plane. Then
(i) H⊥I /HI ' K∨F/KF as quadratic finite modules.
(ii) |V ∨/V | = |K∨F/KF |.N2

F .

Proof. Assertion (i) follows from Lemma page 77 in [Bri83]. For (ii),
notice that H⊥I ' {` ∈ Hom(V ∨/V,Q/Z), `/HI = 0} and that the
cardinality of the latter is equal to |V

∨/V |
NF

. �

Let p : H⊥I → K∨F/KF be the composite of the projection HI →
H⊥I /HI followed by the isomorphism (i) from the last proposition. By
construction, it is a morphism of quadratic finite modules. We have an
induced map p∗ : C[K∨F/KF ] → C[V ∨/V ] which maps an element vγ,
γ ∈ K∨F/KF , to

p∗vγ =
∑
δ∈H⊥I
p(δ)=γ

vδ.

Using (ii) from the previous proposition, it is straightforward that p∗
commutes with the action of the metaplectic group Mp2(Z) given by
the Weil representation as in Section 2.1 Equation (3). Hence, for any
k ∈ 1

2
Z, we have a map

p∗ : Mk(ρ
∗
KF

)Q → Mk(ρ
∗
V )Q.

For γ ∈ V ∨/V , n ∈ −Q(γ) + Z, let

a(γ, n, F ) =
NF

24
(E2.p

∗(ΘF ))(γ, n),

where E2(τ) = 1 − 24
∑

n≥1 σ1(n)qn, q = e2iπτ , τ ∈ H, is the weight 2
Eisenstein series.

The following result is an application of Theorem 5.3.3 in [Pet15] to
formula (4)
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Proposition 2.7. Let γ ∈ V ∨/V , n ∈ −Q(γ) + Z. Then we have the
following linear equivalence relations in Pic(ΓV \DV )

tor

[Z(γ,−n)] =
c(γ, n)

2
[Z(0, 0)] +

∑
F∈S1

u(γ, n, F )∆F

+
∑
i∈I

gi(γ, n)[Z(γi, ni)] +
∑
i∈I

∑
F∈S1

gi(γ, n)a(γi, ni, F )∆F ,

(5)

where
u(γ, n, F ) =

c(γ, n)

2
a(0, 0, F )− a(γ, n, F ),

and the coefficients c(γ, n) are defined in 2.3.

Taking into account the estimates preceding Proposition 2.5, we get

Proposition 2.8. For every ε > 0, γ ∈ V ∨/V and n ∈ −Q(γ) + Z
with n > 0, we have:

[Z(γ,−n)] = − (2π)1+ b
2n

b
2√

|V ∨/V |Γ(1 + b
2
)

∏
p

µp(γ, n, V )[Z(0, 0)]

+
∑
F∈S1

u(γ, n, F )∆F +Oε(n
2+b

4
+ε),

in Pic(ΓV \DV

tor
)Q.

Remark 2.9. The term u(γ, n, F ) can a priori be as large as c(γ, n).
However, when F is strongly primitive, Lemma 2.11 shows that c(γ, n)
cancels because of the term a(γ, n, F ), hence giving a sharper control
on the growth of u(γ, n, F ).

2.4. Some consequences. We turn now to the consequences of the
previous proposition on the distribution of Hodge loci in 1-dimensional
variation of Hodge structure. Let {VZ,F•V , Q} be a simple, non
trivial, polarized variation of Hodge structure over a complex quasi-
projective curve S such that the local system V∨Z/VZ is trivial. Let
ρ : S → ΓV \DV be the corresponding period map. Let S be a smooth
compactification of S such that the following diagram is commutative

S

S

ΓV \DV

ΓV \DV

tor

ρ

ρ

Let γ ∈ V ∨/V and n ∈ −Q(γ) + Z such that n > 0. Since the
variation is assumed to be simple, we can express the degree of the
divisor ρ∗Z(γ,−n) on S as follows:
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degS(ρ∗Z(γ,−n)) =
∑
s∈S

ords(ρ
∗Z(γ,−n)),

where ords(ρ
∗Z(γ,−n)) is the multiplicity of the intersection of S with

Z(γ,−n) at a point s ∈ S.
Notice that degS(ρ∗Z(0, 0)) = −µ(S), where µ is the finite mea-

sure on S given by integration of the first Chern class of F2V . By
Proposition 2.8 we have:

Corollary 2.10. For every ε > 0, γ ∈ V ∨/V and n ∈ −Q(γ) +Z with
n > 0, we have:

degS(ρ∗Z(γ,−n)) =
(2π)1+ b

2n
b
2√

|V ∨/V |Γ(1 + b
2
)

∏
p

µp(γ, n, V )µ(S)

+
∑
F∈S1

u(γ, n, F ) degS(ρ∗∆F ) +Oε(n
2+b

4
+ε).

Assume now that degS(ρ∗∆F ) = 0 if F corresponds to a totally
isotropic plane which is not strongly primitive. The following lemma
gives a control on the coefficient u(γ, n, F ) when F is associated to a
strongly primitive totally isotropic plane.

Lemma 2.11. Let γ ∈ V ∨/V , I an isotropic, strongly primitive plane
of V , F the associated 1-cusp and KF = I⊥/I. Then for all ε > 0 we
have the following estimate:

|u(γ, n, F )| � n
b
2
−1+ε

Proof. Let M≤sk (ρ∗V ) be the vector space of vector-valued quasi-modular
from of weight k and depth less than s (see [IRR14, Definition 1] and
[MR05, Section 17.1] for definitions and properties of quasi-modular
forms). Let D be the derivation operator q d

dq
. Then we have the

following structure theorem

M≤1

1+ b
2

(ρ∗V ) = M1+ b
2
(ρ∗V )⊕D(M b

2
−1(ρ∗V )).

For a proof, we refer to [MR05, Section 17.1] where it is proven for
scalar quasi-modular forms, but the reader may notice that the proof
generalizes easily to vector-valued quasi-modular forms.

The product E2.p
∗(ΘF ) is an element of M≤1

1+ b
2

(ρ∗V ), hence we can
write

E2.p
∗(ΘF ) =

∑
i

αiE
i
L + g +D(g̃),(6)

where g is a cusp form of weight 1 + b
2
, (Ei

L)i is a basis of Eisenstein
series of M b

2
+1(ρ∗V ) with E0

L = EL and g̃ ∈ M b
2
−1(ρ∗V ). By comparing

the constant coefficients, we get α0 = 1
2
and αi = 0 for i 6= 0, since I is
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strongly primitive. Hence for γ ∈ V ∨/V , n ∈ −Q(γ) + Z with n ≥ 0,
we have

(E2.p
∗ (ΘF ))(γ, n) =

c(γ, n)

2
+ g(γ, n) + ng̃(γ, n).

Since g̃ is a modular form of weight b
2
− 1, we have g̃(γ, n) �ε n

b
2
−2+ε

for all ε > 0. Also g is a cusp form and by (see [Sar90, Prop. 1.5.5])
|aγ,n(f)| ≤ Cε,fn

2+b
4

+ε. Combining these estimates we get the desired
result. �

Remark 2.12. If I is not strongly primitive, then for γ /∈ H⊥I , we
have u(γ, n, F ) = c(γ, n), so the estimate in Lemma 2.11 fails. Even
for γ ∈ H⊥I , all the Einsenstein series Eδ for δ ∈ HI appear in the
decomposition (6) with non-zero coefficients, so again Lemma 2.11 fails.

In view of the previous lemma, Corollary 2.10 rewrites

Corollary 2.13. If S only meets the boundary of ΓV \DV

tor
in divisors

∆F corresponding to strongly primitive totally isotropic planes, then for
every ε > 0 we have

degS(ρ∗Z(γ,−n)) = µ(S)
(2π)1+ b

2n
b
2√

|V ∨/V |Γ(1 + b
2
)

∏
p

µp(γ, n, V )+Oε(n
u+ε),

for γ ∈ V ∨/V , n ∈ −Q(γ) + Z with n > 0 satisfying local congruence
conditions of Example 2.3 and u = max( b

2
− 1, 2+b

4
). If S is projective,

then we can choose u = 2+b
4

Remark 2.14. In the case where the discriminant of (V,Q) is square
free, all the primitive isotropic planes are strongly primitive by Propo-
sition 2.6(ii), so the estimate 2.11 holds for all the coefficients u(γ, n, F )
for γ ∈ V ∨/V , n ∈ −Q(γ) + V . The condition on the curve S in 2.13
is then automatically satisfied. Notice that here the control on the
error term is sharper than the one in Theorem 1.1. This is because
we don’t know how to bound the intersection of S and Z(γ,−n) at
the boundary points, see Remark 2.12. However we conjecture that
|S ∩ Z(γ,−n)|mult grows as the main term in the corollary.

3. Equidistribution in orthogonal modular varieties

The main goal of this section is to prove Proposition 3.8 which gives
a lower estimate on the growth of the Hodge locus. The results in this
section are independent from those in section 2.

3.1. Construction of a local map. Let U be a connected complex
manifold and let {VZ,F•V , Q} be an integral, polarized variation of
Hodge structure of weight 2 over U with h2,0 = 1. Assume that the
fiber of (VZ, Q) at a point u0 (hence at all points of U) is isomorphic to
a quadratic even lattice (V,Q) of signature (2, b) as in Section 2.2 and
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assume also that the local system V∨Z/VZ is trivial. It follows that the
monodromy representation factors through ΓV , the stable orthogonal
group of (V,Q). Let ρ : U → ΓL\DV be the corresponding period
map. We will construct in this section a sphere bundle over U that
keep track of Hodge classes and a map from the latter to the quadric
A0 = {x ∈ VR, Q(x) = −1}.

The line bundle F2V is simply the pullback of the Hodge bundle L
via ρ. Let VR be the real vector bundle whose sheaf of differentiable
sections is equal to VZ⊗Q C∞R , where C∞R is the sheaf of C∞ real-valued
functions on U . The fiber at a point u ∈ U of VR is isomorphic to VR.
This vector bundle contains a sub-vector bundle that we shall note V1,1

R
and whose sheaf of differentiable sections is

F1V ⊗ C∞C ∩ VZ ⊗ C∞R .
Let V1,1 := F1V/F2V . Then V1,1

R is the real part of V1,1, i.e the fiber
at each point u is equal to V1,1

u ∩ VR.
Assume that U is simply connected. Parallel transport by the Gauss-

Manin connection trivializes the vector bundle VR, hence it is isomor-
phic to U × VR and this isomorphism preserves the intersection form.
Thus one has the commutative diagram

V1,1
R

U

U × VR

Projecting forward to VR, we get the parallel transport map:

Ξ : V1,1
R → VR.

The locus where this map is not submersive were studied in [Voi02,
17.3.4] and goes back to Griffiths and Green. Let us recall the set-
ting and the main result. By Griffiths’ transversality, the integrable
connection

∇ : V → V ⊗ Ω1
U

induces a OU -linear map:

∇ : F1V/F2V → F0V/F1V ⊗ Ω1
U

Let u ∈ U , then taking the fibers at u induce a C-linear map

∇u : V1,1
u → V0,2

u ⊗ Ω1
U,u

Then we have the following lemma, due to Green (see Lemma 17.21
from [Voi02]).
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Lemma 3.1. Let u ∈ U , λ ∈ V1,1
u . If the map

∇u(λ) : TuU → V0,2
u

is surjective then Ξ is submersive at (u, λ).

Consider the fibration over U defined by

SU = {(u, λ), u ∈ U, λ ∈ V1,1
u,R, Q(λ) = −1} → U.

For every u ∈ U , the restriction of the quadratic form Q to V1,1
u,R is

negative definite, and the fiber SU,u is thus a (b−1)-dimensional sphere.
By restriction of Ξ, we get a map:

φ : SU → A0,

where A0 = {x ∈ VR, Q(x) = −1}.

Lemma 3.2. Let u ∈ U , λ ∈ V1,1
u such that Q(λ) = −1. If the map

∇u(λ) : TuU → V0,2
u

is surjective then φ is submersive at (u, λ).

Proof. Let u and λ be as in the statement. The following diagram is
commutative

T(u,λ)SU T(u,λ)V1,1
R R

TλA0 TλVR R

d(u,λ)(Q ◦ Ξ)

d(u,λ)φ

dλQ

d(u,λ)Ξ

The rows are exact by construction. By Lemma 3.1, d(u,λ)Ξ is surjec-
tive . Hence the map d(u,λ)φ is surjective which proves the lemma. �

If ρ(U) is not a point, then for u ∈ U outside the locus where the
differential of ρ is identically zero, there exists λ ∈ SU,u which satis-
fies the condition of 3.2. Hence, the image Im(φ) is open around λ.
In particular, the set of points of U for which V1,1

u contain an extra
rational Hodge class x with Q(x) = −1 is dense (see [Voi02, Propo-
sition 17.20] and [Ogu03, Theorem 1.1] for a proof without the norm
condition imposed by Q).

Lemma 3.2 shows that on order to study the distribution of the
Hodge locus in U , one can first study the distribution of points λ in
A0 for which there exists γ ∈ V ∨/V and n ∈ −Q(γ) + N such that√
nλ ∈ γ+V , since the locus where φ is not submersive is a proper real

analytic subset of SU . Hence it is negligible from a measure-theoretic
perspective. This will be explained in the following section.
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3.2. Eskin-Oh’s equidistribution result. The study of the distri-
bution of Hodge locus in U amounts via the map φ constructed above
to the study of radial projections of integral points of VR on A0. We
will need thus to understand the distribution in A0 of the set {λ ∈
A0,
√
nλ ∈ γ + V, } for γ ∈ V ∨/V and n ∈ −Q(γ) + V with n > 0.

This a is a well studied problem and can be dealt with using Hardy-
Littlewood’s circle method (see [Vau97]). The results we present here
follow [EO06] and [Oh04] to which we refer for more details. Recall
that G = O(VR)+ is the connected component of the identity of the
real Lie group O(VR).

Let µ∞ be the G-invariant measure on A0 defined in the following
way : take W an open subset of VR and let

µ∞(W ∩ A0) = lim
ε→0

Leb ({x ∈ W, |Q(x) + 1| < ε})
2ε

.

Here Leb is the Lebesgue measure on VR for which the lattice V is of
covolume 1. We can now state the main result of this section which is
an application of Theorem 1.2 in [EO06] (see also [Oh04, Section 5])
and the Siegel mass formula [EO06, (1.6)].

Proposition 3.3. Let Ω be a compact subset of A0 with zero measure
boundary, γ ∈ V ∨/V and n ∈ −Q(γ) + Z with n > 0. Then

|{λ ∈ γ + V,
1√
n
λ ∈ Ω}| ∼ µ∞(Ω).n

b
2 .
∏
p

µp(γ, n, V ),

as n→ +∞.

Proof. To see how Theorem 1.2 from [EO06] can be applied to our
situation, we refer to the proof of Theorem 6.1 in loc. cit.. The only
difference is that here we don’t restrict to fundamental discriminants so
we need to check that condition (1.3) in [EO06] holds. In other words,
we need to know that for each n0, there is only finitely many n such
that

1√
n

(γ + V ) ∩ A0 =
1
√
n0

(γ + V ) ∩ A0.(7)

For a given n, notice that if (7) holds, then

Z(γ,−n) = Z(γ,−n0),

so by Corollary 2.10 this can be true only for finitely many n. �

The G-invariant measure µ∞ can be recovered as integration of a
G-invariant volume form on A0. Indeed, the group G acts transitively
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on A0 and the choice of an element ξ in A0 determines a surjective map
πξ : G −→ A0

g 7→ g.ξ.
(8)

Let H be the stabilizer of ξ. The induced map G/H → A0 is a diffeo-
morphism giving A0 the structure of a symmetric space. Let g0 and h0

be the Lie algebras of G and H respectively. Then g0/h0 is isomorphic
to the tangent space of A0 at ξ via the differential of πξ at the identity
of G. The space of G-invariant volume forms on A0 is then identified
with

∧b+1(g0/h0)∨.

Let (e1, e2, ξ1, . . . , ξb) be an orthogonal basis of VR such that for i =
1, 2 and j = 1, . . . , b we have Q(ei) = −Q(ξj) = 1. Let ωA0 be the
unique G-invariant volume form on A0 such that

ωA0,ξ1 = de1 ∧ de2 ∧ dξ2 ∧ · · · ∧ dξb(9)

in
∧b+1(Tξ1A0)∨. Let µA0 be the G-invariant measure on A0 given by

integration of ωA0 . We have then the following proposition:

Proposition 3.4. For every open subset W of A0, we have

µ∞(W ) =
2
b
2√

|V ∨/V |
µA0(W )

Proof. It is enough to prove the equality for W open subset of A0

containing ξ1. There exists an open subset U b+1 in Rb+1 containing 0
such that the map

U b+1 → A0

(x1, x2, y2, . . . , yb) 7→ (x1, x2,
√
x2

1 + x2
2 − y2

2 − · · · − y2
b + 1, y2, . . . , yb).

is a local chart around ξ1. Let W be its image. For ε > 0, the image
of the map

U b+1×]− ε, ε[→ A0

(x1, x2, y2, . . . , yb, r) 7→ (x1, x2,
√
x2

1 + x2
2 − y2

2 − · · · − y2
b + 1 + r, y2, . . . , yb).

defines a tubular neighbourhood Wε of W in Rb+2 and one can check
that

lim
ε→0

1

2ε

∫
Wε

ω =
1

2
µA0(W ),

where ω = de1∧de2∧dξ1∧· · ·∧dξb and Aε = {x ∈ VR, |Q(x)+1| < ε}.
By change of variable, we have

Leb({x ∈ Wε, |Q(x) + 1| < ε}) =
21+ b

2√
|V ∨/V |

∫
Wε

ω.
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Hence

µ∞(W ) = lim
ε→0

Leb({x ∈ W, |Q(x) + 1| < ε})
2ε

=
2
b
2√

|V ∨/V |
µA0(W )

which proves the lemma. �

Corollary 3.5. Let Ω be a compact subset of A0 with zero measure
boundary, γ ∈ V ∨/V and n ∈ −Q(γ) + Z with n > 0. Then

|{λ ∈ γ + V,
1√
n
λ ∈ Ω}| ∼ µA0(Ω).

2
b
2√

|V ∨/V |
.n

b
2 .
∏
p

µp(γ, n, V ),

as n→ +∞.

3.3. Quantitative study of the Hodge locus. The goal of this sec-
tion is to put together results from the previous sections in order to
prove Proposition 3.8 which gives a lower bound on the cardinality of
the Hodge locus. Let {VZ,F•V , Q} be a non-trivial, polarized, simple
variation of Hodge structure over a complex quasi-projective curve S
and let ρ : S → Γ+

V \D
+
V be the associated period map.

Recall that the Chern class ω of the Hodge bundle F2V defines a
volume form on S . For any open subset ∆ ⊂ S, we note µ(∆) =

∫
∆
ω.

Let ∆ be an open simply connected subset of S. The restriction of ρ to
∆ lifts to D+

V . Let 0 ∈ ∆ be a point in ∆ and P0 the positive definite
plane associated to ρ(0). Then P0 defines a maximal compact subroup
K := SO(P0)× SO(P⊥0 ) of G and a diffeomorphism

π : G/K → D+
V

g 7→ g.P0

We constructed in the previous paragraph a map

φ : S∆ → A0

where S∆ is a sphere bundle over ∆ that fits into the following com-
mutative diagram

S∆

∆

∆× A0 A0

φ
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For any U ⊂ S, γ ∈ V ∨/V and n ∈ −Q(γ) + Z with n > 0, let

|U ∩ Z(γ,−n)|mult =
∑

s∈U∩Z(γ,−n)

m(s, γ, n),

where m(s, γ, n) = |{λ ∈ S∆,s,
√
nλ ∈ γ + V }|.

Lemma 3.6. Let s ∈ S, γ ∈ V ∨/V and n ∈ −Q(γ) + Z such that
n > 0. Then

m(s, γ, n) ≤ ords(ρ
∗Z(γ, n)).

Proof. Let γ, n and s as in the statement of the proposition. Assume
that

{λ ∈ S∆,s,
√
nλ ∈ γ + V } = {λ1, . . . , λk},

where k = m(s, γ, n). There exists a finite index congruence subgroup
Γ of Γ+

V such that the orbits Γ.λ1, . . . ,Γ.λk are pairwise disjoints. In
particular, the divisor

Z ′ := Γ\

 ⋃
λ∈γ+V
Q(λ)=−n

λ⊥

 ⊂ Γ\D+
V

has at least k irreducible components. The kernel of the morphism
π1(S) → ΓV /Γ defines a finite étale cover S ′ ι′−→ S and we have a
commutative diagram

S ′

S

Γ\D+
V

Γ+
V \D

+
V

ι′

ρ′

ι

ρ

Remark that ι∗Z(γ, n) is equal to Z ′. Let s′ ∈ S ′ such that ι′(s′) =
s. Then ords′(ρ

′∗ι∗Z(γ, n)) ≥ k, since Z ′ has at least k irreducible
components. By commutativity of the diagram above,

ρ′∗ι∗Z(γ, n) = ι′∗ρ∗Z(γ, n).

Since ι′ is étale, we have

ords′(ι
′∗ρ∗Z(γ, n)) = ords(ρ

∗Z(γ, n)),

which yields the desired result. �

Remark 3.7. We only have an inequality here because the curve S ′
may have intersection multiplicity strictly greater than one with a given
irreducible component of the Heegner divisor Z ′. In fact Theorem 1.1
implies that this does not happen when n is sufficiently large.
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Proposition 3.8. Let γ ∈ V ∨/V . For all s ∈ S, there exists a simply
connected open neighborhood ∆ ⊂ S of s such that

lim inf
n

|∆ ∩ Z(γ,−n)|mult
n
b
2

∏
p<∞ µp(γ, n, V )

≥ (2π)1+ b
2√

|V ∨/V |Γ(1 + b
2
)
µ(∆),

where n > 0 ranges over numbers in −Q(γ) + Z represented by −Q in
γ + V .

Proof. The map π : G → D+
V ' G/K is submersive. Hence there

exists U a simply connected open subset of D+
V around P0 such that

the following diagram is commutative:

U

U ×Kπ−1(U)
∼

Assume that ρ(∆) is contained in U . We have a holomorphic map
Υ : ∆→ G given by the composition

∆
ρ−→ U → U ×K ∼−→ π−1(U)

t 7→ ρ(t) 7→ (ρ(t), 1K) 7→ Υt

Hence, we have a local trivialization of the fibration S∆ given by

∆

S∆∆× Sb−1

(t, λ) (t,Υt.λ)

∼

where Sb−1 = {x ∈ P⊥0 , Q(x) = −1}.

The map
φ : S∆ → A0

is, by lemma 3.2, submersive at (t, λ) if the map

∇u(λ) : TuU → V0,2
u

is surjective, or equivalently not-identically zero, since TuU is of dimen-
sion 1 over C. Let Ssing∆ the locus where φ is not submersive. Then
Ssing∆ is a proper real analytic closed subset of S∆ negligible for the
Lebesgue measure. Outside Ssing∆ , φ is submersive and in fact a local
diffeomorphism by equality of dimensions.
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Let ψ be the composite map

ψ : ∆× Sb−1 → S∆
φ−→ A0.

The pullback φ∗ωA0 is a volume form on S∆ and so is ψ∗ω0 on ∆×Sb−1.
Let ε > 0, and let Ssing,ε∆ be an open subset containing Ssing∆ such that∫
Ssing,ε∆

φ∗ωA0 ≤ ε. Up to shrinking ∆, we can find a finite open cover
Wi of S∆\Ssing,ε∆ such the restriction φi of φ to Wi is a diffeomorphism.

By Corollary 3.5, we get

|∆ ∩ Z(γ,−n)|mult ≥
∑
i

|{λ ∈ Im(φi),
√
nλ ∈ γ + V }|

=
∑
i

∫
Wi

φ∗ωA0 .
2
b
2 .n

b
2√

|V ∨/V |
.
∏
p

µp(γ, n, V ) + o(n
b
2 )

≥
2
b
2 .
(∫
S∆
φ∗ωA0 − ε

)
.n

b
2√

|V ∨/V |
.
∏
p

µp(γ, n, V ) + o(n
b
2 )

Here we used that
∫
S∆
φ∗ωA0 = µ(∆). 2.π1+ b

2

Γ(1+ b
2

)
, a result we prove in

Lemma 3.9 below. Hence we have

lim inf
n

|∆ ∩ Z(γ,−n)|mult
n
b
2

∏
p<∞ µp(γ, n, V )

≥ (2π)1+ b
2√

|V ∨/V |Γ(1 + b
2
)
µ(∆)− 2

b
2√

|V ∨/V |
.ε

By letting ε→ 0, we get the desired result. �

Lemma 3.9. We have:∫
S∆

φ∗ωA0 = µ(∆).
2.π1+ b

2

Γ(1 + b
2
)
.

Proof. The differential of the map π : G → D+
L at the identity of G

induces an isomorphism of p0 with the tangent space ofD+
L at P0. Since

ω is a G-invariant 2-form, it corresponds uniquely to an element Ω of∧2 p∨0 . Fix an orthogonal basis (e1, e2, ξ1, . . . , ξb) of VR compatible with
the decomposition VR = P0 ⊕ P⊥0 and such that Q(ei) = −Q(ξj) = 1
for i = 1, 2 and j = 1, . . . , b. The Lie algebra g0 is then identified
with so(2, b) and an element M ∈ so(2, b) is written by blocks in the
following way  0 θ U

−θ 0 V
tU tV N

(10)

where θ ∈ R, U and V are 1 × b-dimensional real matrices, and N is
a b× b-dimensional antisymmetric real matrix. For i, j = 1, . . . , b + 2,
let Ei,j be the matrix whose coefficients are zero except the coefficient
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(i, j) which is equal to 1. For i = 1, . . . , b, define Ui = E1,2+i + E2+i,1

and Vi = E2,2+i + E2+i,2. The family (Ui, Vi)i=1,...,b is a basis of p0.
By [CMSP03, 13.1] (see also [GP02, 5.3]), the curvature Θ of the

Hodge bundle is given by

Θ(X, Y ) = −λ([X, Y ])

for X, Y ∈ p and where λ is the linear form on so(2, b) associating to an
element M written as in (10) the element iθ ∈ C. Notice that λ is the
differential of the generator χ of the group of characters of K whose
associated automorphic line bundle is the Hodge bundle (see [Zuc81]).
A computation shows that

Ω =
i

2π
Θ =

1

2π

b∑
i=1

dUi ∧ dVi.(11)

Recall that the Killing form B of g0 is negative definite on the Lie
algebra k0 of K and we have thus an orthogonal decomposition (see
[Hel64]):

g0 = k0 ⊕ p0.

Let ξ ∈ P⊥0 such that Q(ξ) = −1. Then K ′ = SO(P0) × SO((Rξ ⊕
P0)⊥) is a maximal compact subgroup of H and we have similarly an
orthogonal decomposition:

h0 = k′0 ⊕ p′0.

Let sb−1 and p̃ the orthogonal complements of k′0 and p′0 in k0 and p0

respectively with respect to the Killing form B of g0:

k0 = k′0 ⊕ sb−1 , p0 = p′0 ⊕ p̃.

The quotient g0/h0 can then be identified to sb−1 ⊕ p̃. The space sb−1

can be identified, via the differential at the identity of SO(P⊥0 ) of the
map πξ1 introduced in (8), with the tangent space at ξ1 of the sphere

Sb−1 := {x ∈ P⊥0 , Q(x) = −1},
which explains the notation. Let ωSb−1 be the unique SO(P⊥0 )-invariant
volume form on Sb−1 such that

ωSb−1,ξ1 = dξ2 ∧ · · · ∧ dξb.
Then (Sb−1, ωSb−1) is isometric to a sphere of dimension b−1 and radius
1 with its standard volume form, hence∫

Sb−1

ωSb−1 =
b.π

b
2

Γ(1 + b
2
)
.(12)

The group G acts transitively on the left on S := SD+
L
via g.(w, ξ) =

(g.w, g.ξ) for g ∈ G, w ∈ D+
V and ξ ∈ Su. The map φ : S → A0 is
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G-equivariant. For each i = 1, . . . , b, we have thus a surjective map

pi : G→ S
g 7→ (g.P0, g.ξi)

that fits into the following commutative diagram

G

S A0

πξi

φ

pi

The differential of pi induces an isomorphism between the tangent space
of S at (P0, ξi) and sb−1 ⊕ p0, where sb−1 is isomorphic to the tangent
space of Sb−1 at ξi. The element dUi∧dVi ∈

∧2 p∨0 defines a G-invariant
2-form on S that we denote by ωi. Let

ti : K → Sb−1

k → k.ξi.

The pull back of the form ωSb−1 along ti is identified to an element
dY i

1 ∧ . . . dY i
b−1 of

∧b−1 k∨0 for an orthogonal family (Y i
1 , . . . , Y

i
b−1) of k0.

Let ω(i) be the G-invariant (b− 1)-from on S such that p∗iω(i) is equal
to dY i

1 ∧ . . . dY i
b−1 in

∧b−1 g∨0
For each i = 1, . . . , r, we have by (9)

p∗iφ
∗ωA0 = π∗ξiωA0 = dUi ∧ dVi ∧ dY i

1 ∧ . . . dY i
b−1.

which is equal to p∗iωi∧ p∗iω(i) = p∗i (ωi∧ω(i)) by the construction itself.
Hence, φ∗ωA0 = ωi ∧ ω(i) and summing over i yields

φ∗ωA0 =
1

b

b∑
i=1

ωi ∧ ω(i)

Notice now that the restrictions to Sb−1 of the forms ω(i) are all equal
to the form ωSb−1

and that
∑b

i=1 ωi = 2πω by (11). Hence

ψ∗ωA0 =
2π

b
ω ∧ ωSb−1 .

We have in particular
2π

b
µ(∆).

∫
Sb−1

ωSb−1 =

∫
S∆

φ∗ωA0 .

Combined with (12), this yields the desired result. �
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4. End of the proof and applications

The goal of the section is to prove Theorem 1.1. We keep the nota-
tions from previous sections, i.e {VZ,F•V , Q} is a simple, non trivial,
polarized variation of Hodge structure over a quasi-projective curve S
such that the local system V∨Z/VZ is trivial and ρ : S → ΓV \DV is the
corresponding period map.

4.1. First reduction. Let H be a maximal isotropic subgroup of
V ∨/V with respect to Q and let VZ be the inverse image in VZ of
HS, the trivial local system of fiber H. Then {VZ,F•V , Q} defines
a simple, non-trivial, polarized variation of Hodge structure over S.
Moreover, the fibers of the local system VZ are isomorphic to a lat-
tice V which has only strongly primitive totally isotropic planes and
V
∨
/V ' H⊥/H.

Proposition 4.1. If Theorem 1.1 holds for {VZ,F•V , Q} then it holds
for {VZ,F•V , Q}.

Proof. Let ∆ be an open simply connected subset of S which satisfies
Proposition 3.8 and let γ ∈ H⊥ and n ∈ −Q(γ) + Z. Denote by γ its
image in H⊥/H ' V

∨
/V . Then

|∆ ∩ ZV (γ,−n)|mult =
∑
t∈H

|∆ ∩ Z(γ + t,−n)|mult

where ZV (γ,−n) is the Heegner divisor associated to the lattice (V ,Q),
to γ and n. By assumption, Theorem 1.1 holds for {VZ,F•V , Q} :

|∆ ∩ ZV (γ,−n)|mult = −µ(∆)
c(γ, n)

2
+ o(n

b
2 ).

The c(γ, n) are the coefficients of the Eisenstein series EV constructed
out of the lattice (V ,Q) in a similar fashion to Example 2.3. For t ∈ H,
we have by Lemma 3.8

|∆ ∩ Z(γ + t,−n)|mult ≥ −µ(∆)
c(γ + t, n)

2
+ o(n

b
2 )

Thus

|∆ ∩ Z(γ,−n)|mult ≤
µ(∆)

2
.

−c(γ, n) +
∑

t∈H\{0}

c(γ + t, n)

+ o(n
b
2 )

Using Lemma 4.2 below, we have

|∆ ∩ Z(γ,−n)|mult ≤ −µ(S)
c(γ, n)

2
+ o(n

b
2 )

Combined with 3.8, we get the desired result. �
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Lemma 4.2. Let γ ∈ H⊥, n ∈ −Q(γ) + Z. Then∑
t∈H

c(γ + t, n) = c(γ, n) +Oε(n
b+2

4
+ε)

Proof. Let p : H⊥ → H⊥/H ' V
∨
/V . Then p induces two morphisms

p∗ : C[V ∨/V ]→ C[V
∨
/V ]

vγ 7→ vp(γ) if γ ∈ H⊥, 0 otherwise.

and

p∗ : C[V
∨
/V ]→ C[V ∨/V ]

vδ 7→
∑

γ∈H⊥, p(γ)=δ

vγ

which commutes with the Weil representation on both sides. Hence
we have two C-linear map: p∗ : M1+ b

2
(ρ∗V ) → M1+ b

2
(ρ∗
V

) and p∗ :

M1+ b
2
(ρ∗
V

) → M1+ b
2
(ρ∗V ). The modular form p∗EV − p∗p∗EV is then a

cuspidal form and Lemma 4.2 follows by identifying its coefficients. �

4.2. An upper bound. By Theorem 4.1, we may assume that V ∨/V
has no non-trivial totally isotropic subgroup in order the prove The-
orem 1.1. Hence all the primitive isotropic planes of V are strongly
primitive (see the definition preceding Proposition 2.6). Let S be a
smooth compactification of S which fits in the following commutative
diagram

S

S

ΓV \DV

ΓV \DV

tor

ρ

ρ

The boundary S\S is finite. Let ∆0 be a finite union of open subsets
of S around each of those points. Consider ∆ an open subset in S\∆0

which satisfies lemma 3.8. We can find a finite disjoint family of open
subsets (∆i)i∈I included in S which satisfy lemma 3.8 and such that
µ(S) = µ(∆) + µ(∆0) +

∑
i∈I µ(∆i). For each i ∈ I, we have:

lim inf
n

|∆i ∩ Z(γ,−n)|mult
n
b
2

∏
p<∞ µp(γ, n, V )

≥ (2π)1+ b
2√

|V ∨/V |Γ(1 + b
2
)
µ(∆i),

for γ ∈ V ∨/V and n ∈ −Q(γ) + Z satisfying local congruence condi-
tions. Also, by lemma 3.6

|∆ ∩ Z(γ,−n)|mult ≤ degS(ρ∗Z(γ,−n))−
∑
i∈I

|∆i ∩ Z(γ,−n)|mult
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Hence by Corollary 2.13

lim sup
n

|∆ ∩ Z(γ,−n)|mult
n
b
2

∏
p<∞ µp(γ, n, V )

≤ (2π)1+ b
2 (µ(S)−

∑
i µ(∆i))√

|V ∨/V |Γ(1 + b
2
)

≤ (2π)1+ b
2 (µ(∆) + µ(∆0))√
|V ∨/V |Γ(1 + b

2
)

.

Since the volume of ∆0 can be chosen arbitrarily small, we deduce that

lim sup
n

|∆ ∩ Z(γ,−n)|mult
n
b
2

∏
p<∞ µp(γ, n, V )

≤ (2π)1+ b
2√

|V ∨/V |Γ(1 + b
2
)
µ(∆).

Combined with Lemma 3.8, this yields the desired equidistribution
result.

4.3. Elliptic fibrations in families of K3 surfaces. We now derive
some equidistribution results in quasi-polarized families of K3 surfaces.
We begin by some background on K3 surfaces. The main references
are [Huy16] and [BHPVdV04].

Let X be a K3 surface. The second cohomology group with integer
coefficients of X endowed with its intersection form (., .) is an even
unimodular lattice of signature (3, 19), hence isomorphic abstractly to
the K3 lattice

ΛK3 = U⊕3 ⊕ E8(−1)⊕2,

where U is the hyperbolic lattice and E8 the unique definite positive
even unimodular lattice of rank 8, up to isomorphism. Denote by
Q = (·.·)

2
the associated quadratic form.

Definition 4.3. An elliptic K3 surface is a projective K3 surface X
together with a surjective morphism π : X → P1 such the generic fiber
is a smooth integral curve of genus one.

Recall that there is an elliptic fibration on X if, and only if there
exists a parabolic line bundle on X, i.e a non-trivial line bundle L with
(L.L) = 0. Indeed, if X admits an elliptic fibration π : X → P1, then
the class of a fiber gives a non-trivial element e ∈ Pic(X) such that
(e, e) = 0. Conversely, let L be a non-trivial line bundle with square
zero. Either L or L−1 is effective by Riemann-Roch. Assume L is
effective. In [Huy16, 8.2.13], it is shown that up to acting on L by the
Weyl group of X, we can assume that L is nef of square zero. Then
[2.3.10, loc.cit.] shows that πV : X → P(H0(X,L)∨) factors through P1

and induces an elliptic fibration whose fiber class is equal to L.
Let P ⊂ ΛK3 be a primitive Lorentzian anistropic sublattice of rank

ρ ≤ 4 and let V = P⊥. Then (V,Q) is an even quadratic lattice of
signature (2, 20 − ρ) and we have an isomorphism of quadratic finite
modules (V ∨/V,Q) ' (P∨/P,−Q) (see[Huy16, Prop.14.0.2]). Recall
that a P -K3 surface is a K3 surface X with a fixed primitive embedding
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P → Pic(X) such that the image of P contains a quasi-polarization `.
If L ∈ Pic(X) is of square 0, we can write L = LP +LV where LP ∈ P∨
and LV ∈ V ∨. Then (L.L) = (LP .LP ) + (LV .LV ) and (LV .LV ) ≤ 0
since the restriction of the form ( , ) to V is negative definite. Hence
(LP .LP ) > 0, unless L = LP , which is excluded since P is assumed to
be anisotropic.

Definition 4.4. Let X be a P -K3 surface, γ ∈ P∨/P and n ∈ Q(γ)+Z.
A parabolic line bundle L on X is said to be of type (γ, n) if LP ∈ γ+P
and (LP .LP ) = 2n. An elliptic fibration is said to be of type (γ, n) if
a line bundle defining the fibration is so. We call n the norm of the
elliptic fibration.

We are now in the setting of Section 2.2 and we follow its notations,
namely DV is the period domain associated to the lattice (V,Q) and
Z(γ, n) is the Heegner divisors associated to γ ∈ V ∨/V and n ∈ Q(γ)+
Z.

Proposition 4.5. Let X be a P -K3 surface, γ ∈ P∨/P and n ∈
Q(γ) + Z. Then X admits a parabolic line bundle of type (γ, n) if and
only if there exists t ∈ γ + P such that (t.t) = 2n and the period of X
lies on the Heegner divisor Z(γ,−n).

Proof. Let L be a line bundle on X defining an elliptic fibration of type
(γ, n). Write L = LP + LV as above. Then the element LV ∈ γ + V
satisfies (LV .LV ) = −2n and take t = LP . Hence, the period of X lies
on the Heegner divisor Z(γ,−n). Conversely, if the period of X lies in
Z(γ,−n), then there exists λ ∈ H1,1(X) ∩ (γ + V ) such that (λ, λ) =
−2n. By assumption, there exists t ∈ γ+V such that (t.t) = 2n. Then
L = λ+ t ∈ Pic(X) is of square zero and non-trivial. �

Proposition 4.6. Let X be a P -K3 surface. Then X admits an elliptic
fibration of norm less than n if and only if the period of X lies on the
union of the Heegner divisors Z(γ,−s) for γ ∈ P∨/P and s ∈]0, n]
represented by Q in γ + P .

Proof. The forward direction is clear. For the converse, we can con-
struct a parabolic line bundle L on X of norm less than n in the same
way as it was done above. If L is nef, then L defines an elliptic fibra-
tion of degree less than n and we are done. Otherwise, there exists
a −2-curve C such that (L.C) < 0. Then sC(L) := L + (L,C).C is
a parabolic line bundle with positive intersection with C and of norm
less than the norm of L. We repeat the process if sC(L) is not nef.
After a finite number of actions by the Weil group, we get a nef line
bundle. �

Proof of corollary 1.3. Let X π−→ S be a non-isotrivial family of K3
surfaces with generic Picard group equal to P . The orthogonal to PX
in R2π∗ZX defines a polarized variation of Hodge structure of weight
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2 over S with fibers isomorphic to the lattice (V,Q) and to which we
can apply Theorem 1.1. Using Proposition 4.5, this proves (i) and (ii).
For (iii), let ∆ ⊂ S an open subset and Ñ(n,∆) the number of s ∈ ∆
(counted with multiplicity) for which Xs admits an elliptic fibration of
norm less than n. Then by Proposition 4.6 and Theorem 1.1 we have

Ñ(n,∆)

Ñ(n, S)
=

∑
γ∈V ∨/V

∑
s≤n,s∈Q(γ+P ) |∆ ∩ Z(γ,−s)|mult∑

γ∈V ∨/V
∑

s≤n,s∈Q(γ+P ) |S ∩ Z(γ,−s)|mult
−→
n→∞

µ(∆)

µ(S)

�

Remark 4.7. There is an analogous result which concerns families of
hyperkähler manifolds and which we state below. See [Huy03] for defini-
tions. Indeed, given a hyperkähler manifold, the Beauville-Bogomolov-
Fujiki form, defined in [Bea83], endows its second integral Betti coho-
mology group with a structure of a lattice of signature (3, b2 − 3).

Corollary 4.8. Let d be an integer. Let (X ,L2d) → S be a non-
isotrivial, split quasi-polarized family of hyperkähler manifolds of degree
2d over a quasi-projective curve S with generic Picard rank equal to
1 and let {R2π∗ZX ,F•H} be the induced variation of Hodge structure
over S. Let µ be the measure induced by integrating the first Chern class
of F2H. Then the set of points s ∈ S for which Xs admits a parabolic
line bundle L such that (L.L2d,s) = 2dn becomes equidistributed in S
with respect to µ as n→ +∞.

For the definition of split polarization, we refer to [GHS10, Definition
3.9].
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